近期,山东计量院承担的地方标准《脉冲激光器测试方法》通过了专家的审定和项目验收。该标准规定了脉冲激光器的平均输出功率、脉冲宽度、及脉冲峰值功率的测试方法。满足了脉冲激光器光学性能测试的要求。
为了发展社会主义商品经济,促进技术进步,改进产品质量,提高社会经济效益,维护国家和人民的利益,使标准化工作适应社会主义现代化建设和发展对外经济关系的需要,制定标准化。根据《中华人民共和国标准化法》规定,我国的标准分为四级。即国家标准、行业标准、地方标准、企业标准。地方标准是由地方 (省、自治区、直辖市) 标准化主管机构或专业主管部门批准,发布,在某一地区范围内统一的标准。
激光器从运行上分为连续激光器和脉冲激光器。脉冲激光器是指单个激光脉冲宽度小于0.25秒、每间隔一定时间才工作一次的激光器,它具有较大输出功率,适合于激光打标、切割、测距等。常见的脉冲激光器有固体激光器中的钇铝石榴石(YAG)激光器、红宝石激光器、钕玻璃激光器等,还有氮分子激光器、准分子激光器等。调Q和锁模是得到脉冲激光的两种常用的技术。
调Q技术也叫做Q开关技术,是一种获得高峰值功率、窄脉宽激光脉冲的技术。调Q技术的工作原理如下:在光泵浦初期设法将谐振腔的Q值降低,从而抑制激光振荡的产生,使工作物质上能量粒子数得到积累。随着光泵的继续激励,上能级粒子数逐渐积累到zui大值。此时突然将谐振腔的Q值调高,那么积累在上能级的大量粒子便雪崩式地跃迁到激光下能级,在较短的时间内将储存的能量释放出来,从而获得峰值功率较高的激光脉冲输出。
调Q技术出现于1962年,其诞生是激光发展史上的一个重要突破。在此之前,由于普通脉冲激光器输出的驰豫振荡,我们很难获得峰值功率高而脉宽窄的激光脉冲。调Q技术的应用,使我们能够获得峰值功率在兆瓦以上而脉宽仅为纳秒量级的激光脉冲,使激光成为非常强的相干光源,并由此产生了非线性光学等新的光学分支。同时,也推动了诸如激光雷达、激光测距、高速摄影、核聚变等应用技术的发展。
在普通激光器中加入调Q元件即构成调Q激光器。根据调Q元件所采用的介质及其工作方式的不同,调Q激光器可分为电光调Q、声光调Q 、可饱和吸收调Q与机械转镜调Q四类。其中,电光调Q和声光调Q是目前应用较为广泛的调Q技术。
电光调Q是利用某些晶体所具有的线性电光效应实现Q值突变的,具有开关时间短、效率高、调Q的时刻可以精确控制、系统工作稳定、重复频率高、输出脉宽窄(10~20ns)、峰值功率高(几十兆瓦以上)等优点。
声光调Q是利用激光通过声光介质中的超声场时发生衍射效应,造成光束的偏折来控制谐振腔的损耗,从而实现Q值突变的。它具有性能稳定、重复频率高(1~20kHz)、调制电压低(一般<200V)等优点,适用于中小功率、高重频的脉冲激光器。
电光调Q或声光调Q都是人为地利用光通过在电场或声波场作用下的电光或声光介质所发生的各种物理效应,从而控制腔内的反射损耗来实现Q值突变的,是一种主动式的调Q方法。
而可饱和吸收调Q技术,则是利用可饱和吸收体本身的吸收特性(即它是一种非线性吸收介质,在比较强的激光作用下,它的吸收系数会随光强的增加而逐渐减小直至饱和,对光呈现出透明的特性),通过控制腔内的吸收损耗来调节Q值的,是一种被动式的调Q方法,它具有结构简单、方便实用的特点。
半导体可饱和吸收体(SESAM)技术出现于1992年,现已广泛地应用于固体激光器和光纤激光器,以实现短脉冲或超短脉冲。SESAM的基本结构就是把反射镜与吸收体结合在一起。底层一般为半导体反射镜,其上生长一层半导体可饱和吸收体薄膜,上层可能生长一层反射镜或直接利用半导体与空气的界面作为反射镜。这上下两个反射镜就形成了一个法布里-珀罗腔,改变吸收体的厚度以及两反射镜的反射率,可以调节吸收体的调制深度和反射镜带宽。