本网视点
中微子射电天文望远镜将在青海冷湖地区落地
时间:2019-05-08 09:15  浏览:407
      新闻资讯:

  4月23日至27日,由中国科学院国家天文台主办、青海省海西州茫崖市人民政府协办的“国际合作项目GRAND(大型中微子探测阵列)理论研讨会”在茫崖市冷湖镇召开。

  经考察人员的多次选址测量,最终以青海冷湖地区空气质量好,光污染小,无线电波干扰低等优势,符合GRAND国际合作项目的要求,成为中国首个中微子望远镜的安家落户的地方。

  该中微子射电天文望远镜的总投资超过20亿元。




  延伸阅读:

  射电天文望远镜

  射电望远镜(英文名称radiotelescope)是指观测和研究来自天体的射电波的基本设备,可以测量天体射电的强度、频谱及偏振等量。包括收集射电波的定向天线,放大射电信号的高灵敏度接收机,信息记录﹑处理和显示系统等。

  20世纪60年代天文学取得了四项非常重要的发现:脉冲星、类星体、宇宙微波背景辐射、星际有机分子,被称为“四大发现”。这四项发现都与射电望远镜有关。

  与光学望远镜不同,它既没有高高竖起的望远镜镜简,也没有物镜,目镜,它由天线和接收系统两大部分组成。

  射电天文所研究的对象﹐有太阳那样强的连续谱射电源﹐有辐射很强但极其遥远因而角径很小的类星体﹐有角径和流量密度都很小的恒星﹐也有频谱很窄﹑角径很小的天体微波激射源等。为了检测到所研究的射电源的信号﹐将它从邻近背景源中分辨出来﹐并进而观测其结构细节﹐射电望远镜必须有足够的灵敏度和分辨率。

  射电天文望远镜的基本原理:

  经典射电望远镜的基本原理是和光学反射望远镜相似,投射来的电磁波被一精确镜面反射后,同相到达公共焦点。用旋转抛物面作镜面易于实现同相聚焦,因此,射电望远镜天线大多是抛物面。射电望远镜表面和一理想抛物面的均方误差率不大于λ/16~λ/10,该望远镜一般就能在波长大于λ的射电波段上有效地工作。对米波或长分米波观测,可以用金属网作镜面;而对厘米波和毫米波观测,则需用光滑精确的金属板(或镀膜)作镜面。从天体投射来并汇集到望远镜焦点的射电波,必须达到一定的功率电平,才能被接收机检测到。目前的检测技术水平要求最弱的电平应达10-20瓦。射频信号的功率首先在焦点处放大10~1000倍﹐并变换成较低频率(中频),然后用电缆将其传送至控制室,在那里再进一步放大﹑检波,最后以适于特定研究的方式进行记录、处理和显示。

  天线收集天体的射电辐射,接收机将这些信号加工、转化成可供记录、显示的形式,终端设备把信号记录下来,并按特定的要求进行某些处理然后显示出来。表征射电望远镜性能的基本指标是空间分辨率和灵敏度,前者反映区分两个天球上彼此靠近的射电点源的能力,后者反映探测微弱射电源的能力。射电望远镜通常要求具有高空间分辨率和高灵敏度!

  射电望远镜是主要接收天体射电波段辐射的望远镜。射电望远镜的外形差别很大,有固定在地面的单一口径的球面射电望远镜,有能够全方位转动的类似卫星接收天线的射电望远镜,有射电望远镜阵列,还有金属杆制成的射电望远镜。

  中微子天文望远镜

  由于探测技术的提高,人们可以观测到来自天体的中微子,导致了一种新的天文观测手段的产生。一种可以测量那些来自宇宙深处、数量相当稀少的超高能中微子,并确定它们所对应的天体源方位的超大型的探测装置。

  中微子天文学是天体物理的一个分支,主要研究恒星上可能发生的中微子过程以及这些过程对恒星的结构和演化的作用。中微子是不带电的静止质量为零或很小的基本粒子。它和一般物质的相互作用非常弱,除特殊情况外,在恒星内部产生的中微子能够不受阻碍地跑出恒星表面,因此探测来自恒星内部的中微子可以获得有关其内部的信息。

  中微子天文望远镜探测原理:

  我们以IceCube的探测器为例解释一下中微子望远镜是如何探测中微子事例的。IceCube实验利用了南极冰层下大范围的纯净透明的自然冰作为探测器的载体,依照一定的间距布置了大量光学感应器,用以观测超高能中微子进入探测器后与组成冰的原子所发生的反应。如果一个m中微子撞击到冰原子上,将会有一个带电的m子通过弱相互作用而产生出来。在极度透明的冰中,m子在行进过程中会发出可见的蓝光,从而被光学感应器记录下来。由于从m子的路径可以反推出m中微子的入射方向,科学家们进而就会判断出m中微子究竟来自哪个遥远的天体源。简而言之,中微子望远镜的探测原理就是通过探测光信号来重建带电轻子的径迹,从而推断出相应的超高能中微子从何而来、能量大小和它们所携带的其他物理信息。

  基本指标:

  01

  望远镜的灵敏度:

  是指射电望远镜"最低可测"的能量值,这个值越低灵敏度越高。为提高灵敏度常用的办法有降低接收机本身的固有噪声,增大天线接收面积,延长观测积分时间等。

  02

  望远镜的分辨率:

  分辨率指的是区分两个彼此靠近的相同点源的能力﹐因为两个点源角距须大于天线方向图的半功率波束宽度时方可分辨﹐故宜将射电望远镜的分辨率规定为其主方向束的半功率宽。为电波的衍射所限﹐对简单的射电望远镜﹐它由天线孔径的物理尺寸D和波长λ决定,即天文望远镜的极限分辨率取决于望远镜的口径和观测所用的波长。口径越大,波长越短,分辨率越高。由于无线电波的波长要远远大于可见光的波长,因此射电望远镜的分辨本领远远低于相同口径的光学望远镜,而射电望远镜的天线又不能无限扩大。这在射电天文学诞生的初期严重阻碍了射电望远镜的发展。

  对单天线射电望远镜来说,天线的直径越大分辨率越高。但是天线的直径难于作得很大,目前单天线的最大直径小于300米,对于波长较长的射电波段分辨率仍然很低。因此就提出了使用两架射电望远镜构成的射电干涉仪。对射电干涉仪来说,两个天线的最大间距越大分辨率越高。另外,在天线的直径或者两天线的间距一定时,接收的无线电波长越短分辨率越高。拥有高灵敏度。高分辨率的射电望远镜,才能让我们在射电波段"看"到更远,更清晰的宇宙天体。

  
 
发表评论
0评