南极为代表的高寒地区温度起伏大,望远镜镜面易结霜,影响天文观测的效率和质量。日前,国家天文台南京天文光学技术研究所研发了集成有ITO导电膜层的防霜反射膜系,通过准确测量环境和镜面温度来控制导电膜的发热功率,使镜面温度略高于环境温度,从而达到防止镜面结霜的目的。该方法已取得实验验证成功,膜系在具有防霜功能的同时保证了膜系的光谱反射性能,在400nm-2000nm波段范围光谱反射率平均值可优于98%。
ITO导电膜技术是采用磁控溅射的方法,在透明有机薄膜材料上溅射透明氧化铟锡(ITO)导电薄膜镀层并经高温退火处理得到的高技术产品。ITO 薄膜的制备方法有蒸发、溅射、反应离子镀、化学气相沉积、热解喷涂等, 但使用最多的是反应磁控溅射法。ITO膜层的厚度不同,膜的导电性能和透光性能也不同。一般来说,在相同的工艺条件和性能相同的PET基底材料的情况下,ITO膜层越厚,PET-ITO膜的表面电阻越小,光透过率也相应的越小。
反射式望远镜通常利用一个凹的抛物面反射镜或球面反射镜将进入镜头的光线汇聚后反射到位于镜筒前端的一个平面镜上,然后再由这个平面镜将光线反射到镜筒外的目镜里,这样我们便可以观测到星空的影像。反射望远镜在天文望远镜中应用十分广泛。由于这种系统对玻璃材料在光学性能上没有特殊要求,光线不需透过材料本身,而重量较轻无色差又是反射镜的一大优点,因此大口径的望远镜都采用反射式。
反射望远镜分类
常用的有牛顿系统、卡塞格林系统、格雷戈里系统等。现代的大型反射望远镜,大都通过镜面的变换,在同一个望远镜上得到不同的系统,以用于不同的观测项目。下面分别介绍常用的几种系统。
牛顿系统:是反射系统中最简单的光学系统。为了消去球差,主镜一般制成抛物面。但当相对孔径减小到1/12以下,主镜可制作为球面。它的结构简单,磨制比较容易,成本低廉。国内外爱好者自制的天文望远镜大多采用此系统。但由于轴外像差较大,视场不宜做得过大,且眼望方向与镜筒指向方向不一致,使观测者寻星较为困难。但是,相对孔径较大的抛物面牛顿系统,往往被采用作为口径较大的物镜系统,其像质优良,光力强对拍摄视场不大的视面天体十分合用。但由于需要频繁校正光轴及保养镜面,在科普活动中引用较少,多用于深空天体摄影。
格雷戈里系统:詹姆斯·格雷戈里在1663年提出一种方案:利用一面主镜,一面副镜,它们均为凹面镜,副镜置于主镜的焦点之外,并在主镜的中央留有小孔,使光线经主镜和副镜两次反射后从小孔中射出,到达目镜。这种设计的目的是要同时消除球差和色差,这就需要一个抛物面的主镜和一个椭球面的副镜,这在理论上是正确的,但当时的制造水平却无法达到这种要求,所以格雷戈里无法得到对他有用的镜子。
卡塞格林和R-C系统:1672年,法国人卡塞格林提出了反射式望远镜的第三种设计方案,结构与格雷戈里望远镜相似,不同的是副镜提前到主镜焦点之前,并为凸面镜,这就是现在最常用的卡赛格林式反射望远镜。这样使经副镜镜反射的光稍有些发散,降低了放大率,但是它消除了球差,这样制作望远镜还可以使焦距很短。卡塞格林式望远镜的主镜和副镜有经典卡塞格林系统和R-C系统;前者的主镜为抛物面,副镜为双曲面,而后者的主镜为双曲面,副镜也是双曲面。
此二类系统在大型望远镜制作中经常使用。由于卡塞格林式望远镜焦距长而镜身短,放大倍率也大,所得图象清晰;因此得到了非常广泛的应用;但由于其主副镜均为非球面,加工难度甚大,制作成本高昂;再加上视场角较小,所以科普天文望远镜中不常用。
在反射望远镜中,有时会设计成多个焦点,用以产生不同的相对孔径、视场角及焦距。如内史密斯天文望远镜。它是卡塞格林天文望远镜的一种变种;系统在望远镜筒内,主镜和目镜之间设有一面反射镜(如牛顿系统)。它既有卡塞格林焦点,可用来研究小视场内的天体,又可应用牛顿焦点,用以拍摄大面积的天体。南京天文仪器研制中心的KP400K采用卡塞格林系统。
新闻来源:国家天文台南京天文光学技术研究所