行业新闻
上海高等研究院宏观量子中心研究团队最新研究成果有望捕获细胞内以亚毫秒速度发生的生物过程
时间:2019-12-20 11:28  浏览:410
  上海高等研究院宏观量子中心研究团队采用鬼成像方法、超分辨率荧光光学显微镜、随机光学重建显微法相结合,大幅度提高图像信息获取效率,数量级地减少重构超分辨图像所需的采样帧数。研究结果显示成像一个60nm的环,该方法只用10帧图像就可以重构图像,而传统的STORM方法需要多达4000帧图像才能达到同样的效果。此新方法有望捕获细胞内以亚毫秒速度发生的生物过程。

       衍射极限是指一个理想物点经光学系统成像,由于衍射的限制,不可能得到理想像点,而是得到一个夫朗和费衍射像。每个物点的像就是一个弥散斑,两个弥散斑靠近后就不好区分,这样就限制了系统的分辨率,这个斑越大,分辨率越低。这个限制是物理光学的限制,是光的衍射造成的。有几种方法已经开始打破这些衍射局限,包括近场扫描光学显微镜、多光子荧光显微镜等,要开发超高分辨率成像技术,必须利用好荧光显微镜的优势。

显微镜  

       鬼成像技术

       指让一台高分辨率照相机为一个它本身并不能看到的物体成像,方法是使用两个传感器,一个对着一个光源,另一个对着这一物体,这两个传感器对着不同方向。“鬼”成像,又称双光子成像或关联成像 ,是一种利用双光子复合探测恢复待测物体空间信息的一种新型成像技术.传统的光学观察是基于光场的强度的分布测量,关联光学则基于光场的强度的关联测量,并且现有的成像技术主要利用光场的一阶关联信息(强度与位相),而经典‘鬼’成像利用的光场的二阶关联被认为是一种强度波动的统计相关。

       荧光显微镜

       以紫外线为光源, 用以照射被检物体, 使之发出荧光, 然后在显微镜下观察物体的形状及其所在位置。荧光显微镜用于研究细胞内物质的吸收、运输、化学物质的分布及定位等。 细胞中有些物质,如叶绿素等,受紫外线照射后可发荧光;另有一些物质本身虽不能发荧光,但如果用荧光染料或荧光抗体染色后,经紫外线照射亦可发荧光,荧光显微镜就是对这类物质进行定性和定量研究的工具之一。

       超分辨光学显微技术

       光学显微镜受限于光的衍射效应和光学系统的有限孔径,存在分辨率极限(也称阿贝极限),其数值约为l / 2NA(分辨率极限公式),超分辨光学显微技术打破了光学显微镜分辨率极限(200nm)的显微镜,技术原理主要有受激发射损耗显微镜技术和光激活定位显微镜技术。超分辨光学成像技术通常指的是基于远场光学显微镜的超分辨成像技术,主要包括两种实现途径:一种是基于特殊强度分布照明光场的超分辨成像方法(如STED)。另一种是基于单分子成像和定位的方法(如PALM)。

       机光学重建显微镜

       一种将荧光光谱和显微分析技术应用于单个分子之上的崭新的物理手段,其是一种比传统光学显微镜高10倍以上分辨率的新型显微技术。
 
发表评论
0评