铜氧化物高温超导体具有形式多样的三维层状晶体结构,迄今发现的所有铜基超导体的晶体结构均含有相同的铜氧结构单元。这些铜氧结构单元被认为是高温超导电性的起源,尤其是理论物理学家在研究高温超导机理时,主要基于铜氧面结构单元建立二维理论模型。因此,在实验上验证含有铜氧结构单元单层的二维超导体是否与相应的大块晶体具有相同的超导电性和正常态物理是非常重要和有意义的。
这些发现为高温超导体二维理论模型提供了坚实的实验基础,也为高温超导体的实验研究提供了新的思路。
走近二维极限下的铜基超导体系
1986年,物理学家J. Georg Bednorz和K. Alex Müller首次发现铜基高温超导体,并在次年因该项工作被授予诺贝尔物理学奖。目前,在1个大气压下,铜基超导体的超导临界温度最高达134开尔文(-139℃),仍保持着常压条件下超导临界温度的记录。
由此,一个颇为有趣的问题被引出——如果将这些层状铜基超导体减薄至二维极限,也即仅仅一个最小的完整结构单元,其是否仍具备相同的高温超导特性?带着这样的疑问,从一种具有代表性的铜基超导体铋锶钙铜氧(Bi2Sr2CaCu2O8+δ,简称Bi-2212)出发,张远波课题组开启了一场在高温超导体上寻找维度效应的4年之旅。
“不论是高温超导态本身,还是与其有关的诸多关联电子态,本质上都是二维现象。”结合输运和扫描隧道显微学及谱学数据,团队最终发现二维极限下的单层Bi-2212已具备高温超导所需的一切因素。这一结论为高温超导的二维理论模型,和既有高温超导块体材料表面研究的有效性提供了更加坚实的实验基础。
▍探索对极不稳定二维材料的研究方法
在结论之外,该项工作对极不稳定二维材料之研究方法的技术探索亦十分可贵,拓展了有关二维材料研究的视野。
据成员回忆,团队通过使用经氧等离子体处理的氧化硅作为衬底,成功地解理得到大面积单层(即半个原胞厚度的)Bi-2212单晶,却在对单层样品的研究上遭遇瓶颈,不得不展开一场“攻坚战”。
原来,一般认为块体的Bi-2212在大气环境下非常稳定,而实验发现单层Bi-2212却是一种对大气及环境温度极其敏感的材料:痕量的水就会完全破坏其晶体结构,使其不可逆地变质;而略微的加热就会使其结构中用来提供超导所需的载流子的间隙氧挥发逃离晶体。在当时所有可用的微纳加工手段下,样品都会不可避免地经过液相化学环境,或经历不同程度的加热,想要得到由本征单层Bi-2212晶体构成的器件成了一件一时无从谈起的事。
利用这一方案,单层Bi-2212单晶中的高质量超导转变第一次展现在团队眼前。在测量过程中,团队又通过对单层样品进行原位的退火调控其载流子浓度,在单层样品中得到相图,完美复现了块体材料的相图。实验发现,单层Bi-2212在最佳掺杂状态下的超导转变温度与块体材料的数据相比几乎完全一致,差别在实验误差范围之内。