这一固态电池电解质加工新技术的关键在于,活性电解质含锂石榴石组分层(Li6.25Al0.25La3Zr2O12或LLZO)与氮化锂(Li3N)层交替出现。首先,在大约300℃的脉冲激光沉积过程中,把这些层体像饼干一样叠加起来。然后,加热到660℃,再缓慢冷却,这一过程称为退火。在退火过程中,几乎所有的氮原子都被烧成气体,原始氮化物层中的锂原子融合到含锂石榴石中,形成单一富锂陶瓷薄膜。石榴石薄膜中额外的锂含量,使材料保留立方结构,使正电荷锂离子在电解质中快速移动。
使用其他方法生产富锂陶瓷材料,比如用烧结工艺加热,也可以产生致密的微观结构,保持较高的锂浓度,但是需要更高的热量,这导致材料体积过大。相比之下,MIT副教授Jennifer Rupp和她的学生开创的新技术,可以制造出大约330纳米厚的薄膜。Jennifer Rupp表示:“我们在电池中加入更安全的材料,新的陶瓷材料使电解质所占的空间减少100倍。一般来说,采用薄膜结构的电解质,而不是厚陶瓷材料,可以使电池具有更大的电极空间,提升活性存储容量。固态电池不需要很大的电解质。”
全新多层沉积技术产生名为含锂石榴石(LLZO)的材料,该材料的离子电导率是迄今为止锂基电解质化合物中最快的,约为2.9 x 10-5 S cm-1。在退火过程中,薄膜中的晶体结构从无序或非晶态向全晶态、高导电相发展。通过这种方法,研究人员就能理解和观察晶体相,从而提高离子电导率。
生产固态电池的挑战之一,是制造这种材料。要想降低制造成本、并与现有电解液锂离子电池的成本持平,是困难的。其中一个主要原因是需要高温处理陶瓷固体电解质。通常情况下,只有在高温环境下,才能实现足够的固态扩散,以混合陶瓷电解质的组成原子。本次研究提出的新方法,通过在纳米结构中插入锂层,将基于石榴石的固态电池的加工温度降低数百度,达到一半以上,有效克服这一障碍。
研究人员在验证含锂石榴石电极的高导电性及新工艺之后,下一步将测试实际电池中的材料,探讨这种材料如何与电池正极发生反应,以及它的稳定性。麻省理工学院和苏黎世联邦理工大学(ETH)联合申请两项多层含锂石榴石/氮化锂加工专利。新加工方法可以精确控制材料中的锂浓度,也可应用于其他锂氧化物薄膜中,如电池电极应用中的钛酸锂和钴酸锂。