学术科研
大连物化所研制的兆瓦级质子交换膜(PEM)水电解制氢系统实现满功率运行
时间:2021-10-16 08:44  浏览:288
  能源可以进一步分为再生能源和非再生能源两大类型。再生能源包括太阳能、水能、风能、生物质能、波浪能、潮汐能、海洋温差能、地热能等。它们在自然界可以循环再生。是取之不尽,用之不竭的能源,不需要人力参与便会自动再生,是相对于会穷尽的非再生能源的一种能源。
  
  日前,大连化学物理研究所研制的兆瓦级质子交换膜(PEM)水电解制氢系统,在国网安徽公司氢综合利用站实现满功率运行。该系统额定产氢220Nm3/h,峰值产氢达到275Nm3/h。该兆瓦级制氢系统与正在建设的兆瓦级燃料电池发电系统,为大规模绿色氢能综合利用新模式的示范奠定了技术基础。
  
  燃料电池发电是一种洁净高效的发电技术,是国际能源领域研究开发的热点和前沿技术,有着的发展前景。兆瓦,英文:megawatt,通常缩略为MW,是一种表示功率的单位,常用来指发电机组在额定情况下单位时间内能发出来的电量。兆瓦与千瓦、瓦之间的换算关系是:1兆瓦=100万瓦;1兆瓦=1000千瓦;1兆瓦=0.1万千瓦;1兆瓦=0.01亿瓦。
  
  质子交换膜(Proton Exchange Membrane,PEM)是质子交换膜燃料电池(Proton Exchange Membrane Fuel Cell,PEMFC)的核心部件,对电池性能起着关键作用。它不仅具有阻隔作用,还具有传导质子的作用。全质子交换膜主要用氟磺酸型质子交换膜;nafion重铸膜;非氟聚合物质子交换膜;新型复合质子交换膜等。
  
  图.jpg
  
  水电解是一种化学实验,通过水的分解和合成实验来认识水是由氢、氧两种元素所组成的。电解水生产氢气和氧气是一个众所周知的技术,其基本原理是水被直流电力转换成气态的氢和氧,也就是燃料电池逆过程。根据操作温度,主要有两种类型的电解器:低温电解技术和高温电解。LTE分为碱性电解器和质子交换膜电解器两种,它们均已实现商业化运行,可以实现约75%的能量效率。以氢氧化钾水溶液(OH-)作为电解质的碱性水电解技术是一项成熟技术,占有商业水电解器的绝大部分市场,未来主要的研发问题是在改进能源效率的同时,降低电解设备成本。碱性电解质膜正在开发中,它的成功会为水电解技术带来较大进步。
  
  膜电极,是燃料电池发电的关键核心部件,膜电极与其两侧的双极板组成了燃料电池的基本单元 — 燃料电池单电池,由极板、气体扩散层、催化层、质子交换膜组成。氢气通过阳极极板上的气体流场到达阳极,通过电极上的扩散层到达阳极催化层,吸附在阳极催化剂层,氢气在催化剂铂的催化作用下分解为2个氢离子,即质子H+,并释放出2个电子。这一过程称为氢的阳极氧化过程。
  
  在电池的另一端,氧气或空气通过阴极极板上的气体流场到达阴极,通过电极上的扩散层到达阴极催化层,吸附在阴极催化层,同时,氢离子穿过电解质到达阴极,电子通过外电路也到达阴极。在阴极催化剂的作用下,氧气与氢离子和电子发生反应生成水,这一过程称为氧的阴极还原过程,与此同时,电子在外电路的连接下形成电流,通过适当连接可以向负载输出电能,生成的水通过电极随反应尾气排出。
  
  双极板又称集流板,是燃料电池重要部件之一。具有下述功能与性质:分隔燃料与氧化剂,阻止气体透过;收集、传导电流,电导率高;设计与加工的流道,可将气体均匀分配到电极的反应层进行电极反应;能排出热量,保持电池温场均匀;耐蚀;抗冲击和震动;厚度薄;重量轻;同时成本低,容易机械加工,适合批量制造等。
  
  电解槽由槽体、阳极和阴极组成,多数用隔膜将阳极室和阴极室隔开。按电解液的不同分为水溶液电解槽、熔融盐电解槽和非水溶液电解槽三类。当直流电通过电解槽时,在阳极与溶液界面处发生氧化反应,在阴极与溶液界面处发生还原反应,以制取所需产品。对电解槽结构进行优化设计,合理选择电极和隔膜材料,是提高电流效率、降低槽电压、节省能耗的关键。
  
  新闻来源:中国科学院
日期: 2021-10-16
标签: 能源 再生 类型
 
发表评论
0评