学术科研
浙江计量院承担的“基于在役精度智能诊断校准的工业机器人研发及应用”通过了项目中期检查
时间:2021-08-17 09:07  浏览:186
  近日,浙江省计量科学研究院承担的“基于在役精度智能诊断校准的工业机器人研发及应用”通过了项目中期检查。专家组一致认为项目已形成减速器在役精度检测装置研制和试验方法、基于正交双目视觉的三维位姿测量系统、面向精度诊断需求的智能诊断系统、符合工况条件的重载机器人校准方法和工具软件等阶段性成果,并已进入实验验证阶段,具备一定的产业应用前景,项目按合同进度执行,同意通过中期检查。
  
  工业机器人广泛用于工业领域的多关节机械手或多自由度的机器装置,具有一定的自动性,可依靠自身的动力能源和控制能力实现各种工业加工制造功能。工业机器人被广泛应用于电子、物流、化工等各个工业领域之中。相比于传统的工业设备,工业机器人有众多的优势,比如机器人具有易用性、智能化水平高、生产效率及安全性高、易于管理且经济效益显着等特点,使得它们可以在高危环境下进行作业。
  
  本项目研究智能诊断系统、校准软件、高精度测量、精度退化模型集成于国产工业机器人,使国产工业机器人在实际应用中,具备精度诊断与自校正功能,实现工业机器人的长期高精度运行,极大提升国产工业机器人在智能制造产业中竞争力,将对实现重大装备“国产化替代”具有重大示范作用和重大意义。
  
  工业机器人最 早开始投入使用。约瑟夫·恩格尔贝格利用伺服系统的相关灵感,与乔治·德沃尔共同开发了一台工业机器人——“尤尼梅特”,率先于1961年在通用汽车的生产车间里开始使用。最初的工业机器人构造相对比较简单,所完成的功能也是捡拾汽车零件并放置到传送带上,对其他的作业环境并没有交互的能力,就是按照预定的基本程序精确地完成同一重复动作。“尤尼梅特”的应用虽然是简单的重复操作,但展示了工业机械化的美好前景,也为工业机器人的蓬勃发展拉开了序幕。自此,在工业生产领域,很多繁重、重复或者毫无意义的流程性作业可以由工业机器人来代替人类完成。
  
  随后,工业机器人发展迎来黎明期,机器人的简单功能得到了进一步的发展。机器人传感器的应用提高了机器人的可操作性,包括恩斯特采用的触觉传感器;托莫维奇和博尼在世界上最 早的“灵巧手”上用到了压力传感器;麦卡锡对机器人进行改进,加入视觉传感系统,并帮助麻省理工学院推出了世界上第一个带有视觉传感器并能识别和定位积木的机器人系统。此外,利用声呐系统、光电管等技术,工业机器人可以通过环境识别来校正自己的准确位置。
  
  计算机和人工智能技术的发展,机器人进入了实用化时代。像日立公司推出的具有触觉、压力传感器,7轴交流电动机驱动的机器人;美国Milacron公司推出的世界第一台小型计算机控制的机器人,由电液伺服驱动,可跟踪移动物体,用于装配和多功能作业;适用于装配作业的机器人还有像日本山梨大学发明的SCARA平面关节型机器人等。第二代具有一定感觉功能的机器人已经实用化并开始推广,具有视觉、触觉、高灵巧手指、能行走的第三代智能机器人相继出现并开始走向应用。
  
  一般来说,工业机器人由三大部分六个子系统组成。
  
  三大部分是机械部分、传感部分和控制部分。六个子系统可分为机械结构系统、驱动系统、感知系统、机器人-环境交互系统、人机交互系统和控制系统。从机械结构来看,工业机器人总体上分为串联机器人和并联机器人。驱动系统是向机械结构系统提供动力的装置。根据动力源不同,驱动系统的传动方式分为液压式、气压式、电气式和机械式4种。机器人感知系统把机器人各种内部状态信息和环境信息从信号转变为机器人自身或者机器人之间能够理解和应用的数据和信息,除了需要感知与自身工作状态相关的机械量,如位移、速度和力等,视觉感知技术是工业机器人感知的一个重要方面。
  
  机器人-环境交互系统是实现机器人与外部环境中的设备相互联系和协调的系统。机器人与外部设备集成为一个功能单元,如加工制造单元、焊接单元、装配单元等。当然也可以是多台机器人集成为一个去执行复杂任务的功能单元。控制系统的任务是根据机器人的作业指令以及从传感器反馈回来的信号,支配机器人的执行机构去完成规定的运动和功能。如果机器人不具备信息反馈特征,则为开环控制系统;具备信息反馈特征,则为闭环控制系统。根据控制原理可分为程序控制系统、适应性控制系统和人工智能控制系统。根据控制运动的形式可分为点位控制和连续轨迹控制。
  
  新闻来源:浙江省计量科学研究院
 
发表评论
0评