学术科研
我们怎样才能让人工智能变成真正的“智能”呢?
时间:2021-06-02 14:06  浏览:181
  随着人工智能技术的发展,我们生活中的许多应用都带上了“AI”的色彩,比如可以用计算机帮翻译外文文档。但有时候人工智也能会出一些小故障,变得不那么智能,尤其在语言处理方面。那么我们怎样才能让人工智能变成真正的“智能”呢?自然语言处理技术就是一个重要的方式。
  
  自然语言处理技术是人工智能的一个重要分支,其目的是利用计算机对自然语言进行智能化处理。基础的自然语言处理技术主要围绕语言的不同层级展开,包括音位(语言的发音模式)、形态(字、字母如何构成单词、单词的形态变化)、词汇(单词之间的关系)、句法(单词如何形成句子)、语义(语言表述对应的意思)、语用(不同语境中的语义解释)、篇章(句子如何组合成段落)7个层级。这些基本的自然语言处理技术经常被运用到下游的多种自然语言处理任务中,如机器翻译、对话、问答、文档摘要等。
  
  科学家研究自然语言处理技术的目的是让机器能够理解人类语言,用自然语言的方式与人类交流,最终拥有“智能”。AI时代,我们希望计算机拥有视觉、听觉、语言和行动的能力,其中语言是人类区别于动物的最重要特征之一,语言是人类思维的载体,也是知识凝练和传承的载体。在人工智能领域,研究自然语言处理技术的目的就是让机器理解并生成人类的语言,从而和人类平等流畅地沟通交流。
  
  人工智能学习语言存在的问题
  
  目前存在的问题主要有两个方面:一方面,迄今为止的语法都限于分析一个孤立的句子,上下文关系和谈话环境对本句的约束和影响还缺乏系统的研究,因此分析歧义、词语省略、代词所指、同一句话在不同场合或由不同的人说出来所具有的不同含义等问题,尚无明确规律可循,需要加强语用学的研究才能逐步解决。
  
  另一方面,人理解一个句子不是单凭语法,还运用了大量的有关知识,包括生活知识和专门知识,这些知识无法全部贮存在计算机里。因此一个书面理解系统只能建立在有限的词汇、句型和特定的主题范围内;计算机的贮存量和运转速度大大提高之后,才有可能适当扩大范围。
  
  NLP是为各类企业及开发者提供的用于文本分析及挖掘的核心工具,已经广泛应用在电商、金融、物流、文化娱乐等行业客户的多项业务中。它可帮助用户搭建内容搜索、内容推荐、舆情识别及分析、文本结构化、对话机器人等智能产品,也能够通过合作,定制个性化的解决方案。由于理解自然语言,需要关于外在世界的广泛知识以及运用操作这些知识的能力,所以NLP也被视为解决强人工智能的核心问题之一,其未来一般也因此密切结合人工智能发展,尤其是设计一个模仿人脑的神经网络。
  
  目前我们已经进入了以互联网为主要标志的海量信息时代,这些海量信息大部分是以自然语言表示的。一方面,海量信息也为计算机学习人类语言提供了更多的“素材”,另一方面,这也为NLP提供了更加宽广的应用舞台。例如,作为NLP的重要应用,搜索引擎逐渐成为人们获取信息的重要工具,出现了搜索引擎巨头;机器翻译也从实验室走入寻常百姓家;基于NLP的中文输入法(如搜狗、微软等输入法)成为计算机用户的工具;带有语音识别的计算机和手机也正大行其道,协助用户更有效地工作和学习。
  
  总而言之,自然语言技术的发展说明人工智能技术的核心还是在“人”。人工智能和机器学习带给决策过程的支撑和信心将使创新加速,但这并不意味着人类的缺席。人们仍然需要定义分析的起点、标注主题并从收集的信息中提取所需数据。
  
  资料来源:千家网、科普中国-科学原理一点通
日期: 2021-06-02
 
发表评论
0评